最新免费av在线观看,亚洲综合一区成人在线,中文字幕精品无码一区二区三区,中文人妻av高清一区二区,中文字幕乱偷无码av先锋

登錄 免費注冊 首頁 | 行業(yè)黑名單 | 幫助
維庫電子市場網(wǎng)
技術交流 | 電路欣賞 | 工控天地 | 數(shù)字廣電 | 通信技術 | 電源技術 | 測控之家 | EMC技術 | ARM技術 | EDA技術 | PCB技術 | 嵌入式系統(tǒng)
驅動編程 | 集成電路 | 器件替換 | 模擬技術 | 新手園地 | 單 片 機 | DSP技術 | MCU技術 | IC 設計 | IC 產業(yè) | CAN-bus/DeviceNe

研討翻譯:ADI AN-280 混合信號電路的設計技術 19

作者:akaer 欄目:模擬技術
研討翻譯:ADI AN-280 混合信號電路的設計技術 19
/*-----------------------------------------------------------------*/
寫在前面
    一年之際在于春,大家一起Reload! 這篇技術文獻的內容我覺得很棒,因此決心翻譯出來與大家共同學習。文章比較長,還沒有全部完成,從今天起我將按章節(jié)順序慢慢貼出來。
    翻譯過程中我發(fā)現(xiàn)部分內容已經(jīng)編入高光天老師的《ADI產品應用技術叢書》,因此直接摘抄了一些,并在我的譯文中做了標注。
    限于水平,有的地方很可能不準確甚至有錯誤,希望大家支持,歡迎大家指正!
                                                 akaer
/*-----------------------------------------------------------------*/

研討翻譯:ADI AN-280 混合信號電路的設計技術 0

作者:ADI
譯者:akaer

標題:Mixed Signal CIRCUIT Techniques

目錄

Introduction  前言

Resistance  電阻器

  Resistance of Conductors  導體的電阻
  Skin Effect  趨膚效應
  Voltage Drop in Signal Leads “Kelvin” Feedback  “開爾文”反饋技術
  Leakage in Insulators  絕緣材料的漏電現(xiàn)象
  Guard Rings  等電位保護環(huán)
  Electrostatic Damage (ESD)  靜電放電危害
  Parasitic Effects in Resistors  電阻器的寄生效應
    Inductive resistors  電阻器的電感特性
    Thermo-electric Effects  熱偶效應
    Stability & Matching  電阻的穩(wěn)定性與匹配
    Voltage Variation of Resistance高阻值電阻器的非線性
    Johnson Noise  約翰遜噪聲

Capacitance  電容器
  Stray Capacitance  分布電容
  Capacitive Noise & Faraday Shields  容性耦合噪聲與法拉第屏蔽
  Parasitic Effects in CAPACITORs  電容器的寄生特性
  CAPACITOR Leakage  電容漏電
    Series/Loss Resistance  等效串聯(lián)電阻
    Inductance of CAPACITORs  電容器的電感特性
    Dielectric Absorption  介質吸收

Inductance  電感器
  Stray Inductance  分布電感
  Mutual Inductance  互感
  Ringing  振蕩
  Parasitic Effects in Inductors  電感器的寄生特性
  Q or “Quality Factor”  Q值/品質因數(shù)

Grounding & Signal Routing  接地與布線技術
  Signal Return Currents  信號返回電流
  Ground Noise and Ground Loops  地線噪聲與地線環(huán)路
  Star (Mecca) Grounds  星形接地技術
  Separate ANALOG and DIGITAL Grounds  區(qū)別對待模擬地和數(shù)字地
  Ground Planes  整面接地
  Transmission Lines  傳輸線
  SYSTEM Grounds  復雜接地
  Signal Routing  信號線的布線要求

POWER Supplies  電源
  POWER Supply Noise  電源噪聲
  Switching-mode POWER Supplies  開關電源

Electromagnetic Interface  電磁干擾
  Radio Frequency Interface  射頻干擾
  Photoelectric Effects  光電效應

LOGIC  數(shù)字電路
  Fan-out  扇出能力
  Timing variations  時序偏差
  Sampling clock noise  采樣時鐘帶來的噪聲
  LOGIC noise  開關噪聲

Problems Areas  其他注意事項
  Limitations of SPICE Modeling  SPICE模型的局限性
  Sockets  關于器件插座
  Prototyping High Performance ANALOG CIRCUITry  高性能模擬電路的搭試

References  參考資料



* - 本貼最后修改時間:2006-4-24 22:12:58 修改者:akaer

2樓: >>參與討論
adamzhao
不錯!但是有些地方不太準確或不簡潔
偶改了一下:

目錄

Introduction  簡介【導論】

Resistance  電阻

      Resistance of Conductors 導體電阻
      Skin Effect 趨膚效應
     Voltage Drop in Signal Leads--- “Kelvin” Feedback     信號線上電壓降--- “開爾文”反饋
    Leakage in Insulators  絕緣體漏電
    Guard Rings  保護環(huán)
      Electrostatic Damage (ESD)  靜電放電危害
      Parasitic Effects in Resistors  電阻器寄生效應
        Inductive resistors  感性電阻器
        Thermo-electric Effects  熱電效應
        Stability & Matching  穩(wěn)定性與匹配
        Voltage Variation of Resistance高阻值電阻器的非線性
        Johnson Noise  約翰遜噪聲

Capacitance  電容

      Stray Capacitance  分布電容
      Capacitive Noise & Faraday Shields  容性噪聲與法拉第屏蔽
      Parasitic Effects in CAPACITORs  電容器寄生效應
      CAPACITOR Leakage  電容漏電
        Series/Loss Resistance  等效串聯(lián)電阻
        Inductance of CAPACITORs  電容器電感特性
        Dielectric Absorption  介質吸收

Inductance  電感

      Stray Inductance  分布電感
      Mutual Inductance  互感
      Ringing  振鈴
      Parasitic Effects in Inductors  電感器寄生效應
      Q or “Quality Factor”  Q值/品質因數(shù)

Grounding & Signal Routing  接地與信號布線

      Signal Return Currents  信號返回電流
      Ground Noise and Ground Loops  地噪聲與地線環(huán)路
      Star (Mecca) Grounds  星形接地技術
      Separate ANALOG and DIGITAL Grounds  分離模擬地和數(shù)字地
      Ground Planes  地平面
      Transmission Lines  傳輸線
      SYSTEM Grounds  系統(tǒng)接地
      Signal Routing  信號線排布

POWER Supplies  電源

      POWER Supply Noise  電源噪聲
      Switching-mode POWER Supplies  開關電源

Electromagnetic Interference  電磁干擾

      Radio Frequency Interference  射頻干擾
      Photoelectric Effects  光電效應

LOGIC  數(shù)字電路

      Fan-out  扇出
      Timing variations  時序偏差
      Sampling clock noise  采樣時鐘噪聲
      LOGIC noise  邏輯噪聲

Problems Areas  其它注意事項

      Limitations of SPICE Modeling  SPICE模型的局限性
      Sockets  接插件
      Prototyping High Performance ANALOG Circuitry  
         高性能模擬電路樣機

References  參考資料


3樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 1


Introduction

前言

[001] There are considerably more problems involved in the successful design of Mixed Signal CIRCUITry than mere CIRCUIT design. If we design an electronic CIRCUIT as a diagram, whether we use an old-fashioned pencil and paper or, as is the modern fashion, a COMPUTER and SPICE or some similar SOFTWARE, we are overlooking one of the most important factors in the design of successful HARDWARE, namely that what we are designing is HARDWARE, and until it has been shown to work successfully in fact, rather than in simulation, our design is not complete.

[001] 與一般電路相比,設計混合信號電路時需要注意的地方更多。硬件設計不是紙上談兵。拿筆在紙上畫畫圖,或者時髦地在計算機上用SPICE之類的軟件工具搞搞仿真,不能算是完整的硬件設計,因為這種方式忽略了硬件設計最重要的特征——“硬件實現(xiàn)”。換句話說,仿真驗證只是設計的一個階段,實踐才能檢驗設計是否成功。

[002] This section of our seminar considers the problems which arise when reality reacts on a design which theory and MODELing have shown to be satisfactory. What, in fact, has happened is that our MODEL probably does not consider the effects of non-ideal components and of spurious or parasitic components resulting from the CIRCUIT layout which has been used. It is not, perhaps, too fanciful to describe this as the section of the Seminar dealing with Murphy's Law.

[002] 本文要探討的是那些符合理論和數(shù)學模型的設計在實踐中遇到的各種問題。這些問題的原因是理論或模型可能并未考慮到的元器件的非理想特性,以及與電路板布局布線相生相伴的寄生特性。這些問題與其說神秘莫測,不如說是Murphy定律的體現(xiàn)。



[003] Murphy's Law, though frequently expressed humorously, is not entirely a joke. It is a recognition of the complexity of physical SYSTEMs and a warning against over-simplification and is comparable with Einstein's warning that "Everything should be made as simple as possible - but no simpler".'

[003] 人們常常會拿Murphy定律開玩笑,但它真的不是玩笑。它體現(xiàn)出人們對自然界復雜性的認識,體現(xiàn)出對“過度簡化”方法論的防范,其意義堪與愛因斯坦的警句——“Everything should be made as simple as possible - but no simpler”——相提并論。



[004] This section of the seminar discusses the various physical effects which must be considered in the design of the HARDWARE of mixed signal SYSTEMs. Often such consideration will amount to a quick calculation to demonstrate that further consideration is not necessary, but sometimes extensive analysis, or even actual experiments, will be necessary. However, the quick calculation must not be omitted, since problem are rarely obvious and often unexpected. The effects which must be considered will include many basic law of PHYSICS.

[004] 本文將介紹混合信號電路硬件設計相關的物理現(xiàn)象。有時候,考慮這些現(xiàn)象的分析結果與簡化分析的結果相比差別不大,但是有時候,詳細分析甚至搭試卻是十分必要的。當然,簡化分析不應該被忽視,因為麻煩經(jīng)常是隱蔽和出乎意料的。[疑慮:此句前后意思似乎不搭。]] 討論這些現(xiàn)象將用到以下一些物理學定律:



[005] We therefore shall use as a section heading the major phenomenon considered in the section, but in the most general sense (for example, under "Resistance” we shall consider the non-ideal behavior of RESISTORs, including noise, thermo- ELECTRIC and inductive effects, which are not strictly issues of Ohm's Law).

[005] 本文各章節(jié)的標題將是各物理現(xiàn)象的主要特征,但是在討論的時候將更為全面。(以“電阻”一章為例,本文(除了討論電阻,還要)討論電阻的非線性,包括噪聲、熱偶現(xiàn)象以及電感特性,而歐姆定律并不涉及這些問題。)

[006] When considering the effects of CIRCUIT conditions we are, of course, interested in their effects on the performance of the SYSTEM as a whole. Failure to allow for this is at the root of many of the problem which this section considers. For example, a l6-bit SYSTEM divides its full-scale (FS) range into 216 or 65536, which means that 1 LSB in a 10V FS SYSTEM is ONLY 153 uV. If we assume that we can tolerate errors of no more than 0.5 LSB, this calculation tells us that in a 16-bit SYSTEM with 10 V FS we must KEEP the total error to less than 76 pV, which is approximately equal to the thermo-ELECTRIC voltage in a nichrome wirewound RESISTOR with copper/nickel leads having about 2℃ temperature difference between its ends.

[006] 當評價一個電路的性能時,設計者當然會關注該電路在整個系統(tǒng)中的表現(xiàn)。很多麻煩的根源就是在于設計初期沒有這樣通盤考慮,本文要討論的就是這個問題。例如,16位采樣系統(tǒng)的量程被劃分為216即65536份,如果量程是10V,1LSB就相當于153uV。假設電路的噪聲必須小于0.5LSB,按照前面的計算,這意味著在10V量程的電路中必須將噪聲控制在76uV以下,而這個電壓大致與(鎳鉻鐵合金)線繞電阻的兩個引腳(銅/鎳)間溫差2C時的熱噪聲相當。

[007] Binary LOGIC CIRCUITry, on the other hand, has ONLY two states, LOGIC 0 and LOGIC 1, and noire immunity of hundreds or thousands of millvolts. This is why CIRCUIT designers who have ONLY worked with DIGITAL CIRCUITry tend to overlook the source of error which we are considering in this section of the seminar.

[007] 另一方面,二進制邏輯電路只有兩個穩(wěn)態(tài)——邏輯0和邏輯1,其噪聲容限可以達到數(shù)百至數(shù)千毫伏。正因如此,有些只做過數(shù)字電路設計的工程師根本不會想到本章將要提到的那些誤差源。



[008] Figure 11.4 lists the sizes of 0.5 LSB at various resolutions (the VALUEs are given for 10 V fullscale since this is a classical converter range and where LSBs are given a mV VALUE in this section of the seminar a 10 V FS is assumed unless explicitly stated otherwise - scaling to other VALUEs of FS is a trivial operation). Every ANALOG designer should be familiar with this table, since not ONLY does it allow the comparison of converters which are specified in different ways but it also indicates whether a design is reasonable or not - if noise or SYSTEM errors amount to 1 mV there is little point in designing a SYSTEM with more than 12-bits resolution.

[008] 圖11.4給出了不同分辨率條件下0.5LSB對應的變化量。(鑒于目前模數(shù)轉換器典型的滿量程范圍是10V,所以表格中的數(shù)據(jù)都是按照滿量程10V計算。本文中,如果沒有特別說明,當1LSB為mV量級時,其滿量程范圍都是10V,滿量程不等于10V的情況可以參照本例推算。)每位模擬電路設計師都應該對這張表諳熟于心,這樣做不但有助于模數(shù)轉換器的選型(避開不同評價標準的影響),而且可以判斷一個設計是否可行——例如,如果噪聲和系統(tǒng)誤差達到1mV,那么在該設計中就沒有必要采用12位以上的分辨率。

 

* - 本貼最后修改時間:2006-2-26 1:12:15 修改者:akaer

4樓: >>參與討論
akaer
回復 adamzhao
    謝謝支持! 你的翻譯我仔細看過,很多地方改得簡潔多了。

    Resistance我譯作“電阻器”的確不妥。本文主要是討論非理想因素和現(xiàn)象,我想了想,按作者的意思應該是“電阻”更準確,RESISTOR譯作電阻器似更合適。二者的區(qū)別是,resistance表示性質,RESISTOR表示具體的元件。類似地,Capacitance和Inductance譯作“電容”和“電感”,CAPACITORINDUCTOR譯作“電容器”和“電感器”。后面我會注意這個問題。



* - 本貼最后修改時間:2006-2-21 8:42:24 修改者:akaer

5樓: >>參與討論
iC921
有些地方看看正文好譯一點
比如:Voltage Drop in Signal Leads “Kelvin” Feedback,應是“抵消信號線壓降的開爾文反饋(技術)”,但光看這點東西(原文),就不好譯了。


一年多年的感受:進步了一點了,現(xiàn)在回去看以前的翻譯,有時自己也覺得好好笑,好青澀。大家的都有,只是我的太多了......

感謝akaer百忙中抽時間為我們翻譯這樣好的文章。


***************************************************
akaer:
Voltage Drop in Signal Leads “Kelvin” Feedback  “開爾文”反饋技術

adamzhao:
Voltage Drop in Signal Leads--- “Kelvin” Feedback     信號線上電壓降--- “開爾文”反饋


6樓: >>參與討論
iC921
哪位找一下“混合信號電路”的概念
有個正式的比較好

* - 本貼最后修改時間:2006-2-21 1:47:49 修改者:iC921

7樓: >>參與討論
akaer
回復ic921
謝謝鼓勵!

關于“混合信號”或者“混合信號電路”我暫時沒有權威的定義。只是看很多生產ADC、DAC甚至MCU、FPGA的廠商和做數(shù)據(jù)采集卡的廠商都這么說自己的產品。

8樓: >>參與討論
computer00
應該是模擬、數(shù)字、高頻等這些信號同時在一起吧
 
9樓: >>參與討論
child_hood
什么是混合信號電路
什么是混合信號電路?

10樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 2

Resistance

電阻

Resistance of Conductors

導體的電阻

[009]Every ENGINEER is familiar with resistors -little cylinders with wire ends - although perhaps fewer are aware of all their idiosyncrasies. Far too few ENGINEERs consider that all the wires and PC tracks with which their systems and circuits are assembled are also resistors.

[009]每個工程師都熟悉電阻器——圓柱形,兩端有引線,不過完全熟悉電阻器各項特性的人可能不多,而能意識到系統(tǒng)中的電線和印刷電路導線都是電阻的人就更少了。

[010]At 25℃ the resistivity of PURE copper is 1.724×10-6 ohm/cm. The thickness of STANDARD (1 ounce) PCB foil is 0.038 mm (0.0015"). The resistance of STANDARD PCB copper is therefore 0.45 milliohms/square, which implies a resistance for the 0.25 mm track frequently used in COMPUTER designed DIGITAL circuitry of 18 milliohms/cm, which is quite large. Moreover the temprature cofficient of resistance for copper is about 0.4% /℃  around room temperature, which can be a further inconvenience.

[010] 在25℃條件下,純銅的電阻率為1.724×10-6ohm/cm。標準(1盎司)PCB銅箔的厚度為0.038mm(0.0015英寸),因此,標準PCB銅箔的電阻率為0.45mohm/cm2。CAD軟件中數(shù)字電路的線寬一般為0.25mm,按此推算其電阻率為18mohm/cm,這是一個相當大的值。另外,在室溫范圍,銅的電阻率的溫度系數(shù)大約是0.4%/℃,這也會影響導線的電阻。

[011] As an illustration of the effect of PCB track resistance consider a 16-bit ADC with a 5k ohm input resistance which has 5 cm of 0.25 mm PCB track between it and its signal source. This track has a resistance of approximately 0.09 ohms and introduces a gain error of 0.09 ohms / 5000 ohms (0.0018%) which is well over 1 LSB (0.0015% for 16 bits).

[011] 下面用一個16位模數(shù)轉換器的例子來說明PCB導線電阻對性能的影響。假設信號源到ADC的導線長度為5cm,線寬0.25mm,ADC的輸入電阻為5kΩ。那么導線的電阻大約是0.09ohm,將產生0.09/5000(0.0018%)的增益誤差,這已經(jīng)超出了1LSB(對于16位ADC,1LSB為0.0015%)。




SKIN EFFECT

趨膚效應

[012]This, of course, is a DC effect. At high frequencies we must also consider the "skin effect" where inductive effects cause currents to flow ONLY in the surface of conductors. This has the effect of increasing the resistance of a conductor at high frequencies (note that this effect is separate from the increase in impedance due to the effects of the self-inductance of conductors as frequency is increased – that will be dealt with later). Skin effect is quite a complex phenomenon and detailed calculations are beyond the scope of this seminar. However a GOOD approximation for copper is that the skin depth in centimeters isEquation P3-1.

[012[b]][譯者疑慮]趨膚效應當然是一個直流現(xiàn)象。[/b]趨膚效應的定義是——在傳輸高頻信號時,由于導體自身的電感特性,電流的流動將集中在導體的表層。這意味著在傳輸高頻信號時,導體的電阻會增加。(請注意趨膚效應與分布電感的區(qū)別,分布電感是指在頻率提高時,因導體自感而造成的阻抗增加。分布電感將在以后的章節(jié)討論。)趨膚效應是相當復雜的物理現(xiàn)象,與其相關的定量分析不是本文的主題。不過,銅導體的趨膚深度可以用公式P3-1近似推算:





[013] Assuming that skin effects become important when the skin depth is less than 50% of the thickness of the PC foil this tells us that for normal 0.038 mm PC foil we must be concerned about skin effects at frequencies above approximately 12 MHz.

[013] 假定,僅當趨膚深度小于印刷導線銅箔厚度的50%的時候,才需要考慮趨膚效應的影響。換句話說,對于銅箔厚度0.038mm的普通PCB,只有當信號頻率高于12MHZ時才需要考慮趨膚效應。

[014] Where skin effect is important the resis- tance per square for copper is ( Equation P3-2 )  ohms per square.

[014] 在考慮趨膚效應時,每平方?[[/B]疑慮:這里沒有指出面積單位]銅箔的電阻可按公式P3-E2計算:



[015] When calculating skin effects in PCBs it is important to remember that current flows in both sides of the PC foil (this is not necessar- ily the case in microstrip lines) so the resis- tance per square of PC foil is half the above VALUE.

[015] 請注意,在衡量趨膚效應對PCB的影響時,因為電流會在印刷導線的上下表面同時流動(對于微帶線就不一定了),所以按上面公式計算出的電阻值應減半。



 

* - 本貼最后修改時間:2006-3-2 22:26:18 修改者:akaer

11樓: >>參與討論
iC921
這個翻譯,好難!
 
12樓: >>參與討論
hyonggang
樓主辛苦了
要是樓主能把公式貼上來就更好了

13樓: >>參與討論
akaer
回復hyonggang
謝謝!公式和插圖其實已經(jīng)備好,但是好象電腦有問題,上傳了幾次都不成功。我會盡快補上的。

14樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 3


VOLTAGE DROP IN SIGNAL LEADS - "KELVIN" FEEDBACK

開爾文反饋——抵消信號線上的壓降

[016]  The gain error resulting from resistive voltage drop in signal LEADs is important ONLY at high resolutions (as in the example) or where large signal currents flow. Where the load impedance is constant and resistive it can be compensated by adjusting the overall SYSTEM gain. In other circumstances it may often be removed by the use of "KELVIN" or 'voltage sensing" feedback.

[016]  在信號電流非常大或者精度要求非常高(如上例)的場合,信號線內阻上的電壓降會引入增益誤差。當負載為純阻性負載且阻值恒定時,這個誤差可以通過調整電路的總增益來補償。其他情況下,可以用“開爾文”法([[/B]疑慮]“電壓感應反饋法)去除。[B]



[017]  Separate force and sense connections at a load remove any errors resulting from volt- age drops in the force LEAD, but, of course, may ONLY be used in SYSTEMs where there is negative feedback. It is also impossible to use such an arrangement to drive two or more loads with equal accuracy since feedback may ONLY be taken from one point.

[017]  在負載端引出兩根導線——一根傳輸線,一根感應線——可以抵消傳輸線上的電壓降,不過這種方法僅適用于負反饋電路。此外,在多個負載條件下,因為反饋點只能來自于其中一個負載,所以不能保證每個負載都獲得同樣高的信號精度。


* - 本貼最后修改時間:2006-2-26 0:22:42 修改者:akaer

15樓: >>參與討論
iC921
圖片最好傳到自己的BLOG里,避免時間長了被沖掉
這不是確認的認識,但應當會有此事。

16樓: >>參與討論
蔣軍2155
感謝你們!
樓主辛苦了!雖然上面的很多東西我現(xiàn)在看不懂,但還是要感謝你們!

17樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 4
LEAKAGE IN INSULATORS絕緣體漏電

[018] Just as conductors are improperly viewed as superconductors, so are insulators often mistakenly treated as perfect insulators, rather than very high resistances, which is the more accurate MODEL.

[018] 有人會把所謂“導體”視為超導體,同樣也會把所謂“絕緣體”看作完全不導電的介質。其實準確說來,絕緣體是一些電阻非常大的介質。

[019] Most printed CIRCUIT board materials are very GOOD insulators, but they are not perfect, and inadequately cleaned PCB material may be quite a poor insulator. Furthermore, PCBs are anisotropic even on a clean PCB different parts of the surface may have different resistivities, and the BULK resistance (between two plated through holes, for in. stance) is generally lower than the surface resistance between two tracks.

[019] 絕大多數(shù)的PCB板材都是性能優(yōu)良的絕緣體,但是它們也有弱點:首先,如果PCB板(表面)不夠清潔,其絕緣性能將大大降低;其次,由于PCB板材的各向異性,即便是清潔的PCB板,其表面不同部位的絕緣電阻也不相同;最后,PCB的內部電阻(BULK resistance)(例如兩個金屬化孔之間的電阻)一般要低于印刷導線間的表面電阻。



[020] Since the insulation resistance is so variable (and it will vary further with temperature and HUMIDITY) it is hard to predict in any particular circumstances but it is safe to assume that it is unlikely that the resistance between two conductors on a clean PCB will drop below 10^10 - 10^11 ohms, and with Teflon PCB material (which is very expensive) will usually be over 10^12 ohms.

[020] 絕緣電阻會隨著外部環(huán)境因素變化(溫度、濕度都會影響其大。,因此想要準確計算各種條件下的絕緣電阻是非常困難的。不過,對于清潔的PCB板來說,印刷導線間的絕緣電阻不會低于1010~1011歐,Teflon材質的PCB(價格昂貴)更是會高于1012歐。



GUARD RINGS

保護環(huán)

[021] In applications where high impedances and very low currents are involved a guard ring may be used to minimize the effects of low insulation resistance. If critical high impedance nodes are surrounded by a ring of conductor  which is at (or very CLOSE to) the potential of the node itself then the leakage current at the node will be minimized. If the node is at, or near to, ground then a grounded guard ring will be appropriate, if it is at some other potential it may be necessary to use a high input impedance buffer AMPLIFIER, with its input connected to the node, to force the guard ring to the node potential. It is obvious that, in general, guard rings should be on both sides of the PCB with plated-through holes.

[021] 保護環(huán)用在那些高阻抗或電流非常微弱的電路中,用于減輕因絕緣電阻不夠高而產生的(漏電)問題。其原理是:用環(huán)形導線把關鍵的高阻抗節(jié)點包圍起來,假如環(huán)的電位等于(或非常接近于)該節(jié)點的電位,那么節(jié)點周圍的漏電流將最小。如果被保護的節(jié)點的電位是(或接近)零電位,采用地線保護環(huán)最為合適;如果節(jié)點電位是其他值,那么可以用高輸入阻抗放大器組成緩沖器,輸入端連接該節(jié)點,輸出端連接保護環(huán)。顯然,一般情況下,在PCB的上下表面都應設計保護環(huán),二者通過金屬化孔相連。

[022] Nodes which are sufficiently sensitive to require guard rings should not contain plated through holes (unless the PCB is made of teflon) because, as mentioned above, the BULK resistivity of PCB material is less than the surface resistivity.

[022] 如前文所述——PCB的內部電阻率小于表面電阻率,因此,受保護節(jié)點處絕不能打過孔(除非PCB采用Teflon板材)。

[023] An alternative to the use of a guard ring is to use teflon stand-off insulater(s) to SUPPORT the high impedance point(s). If VIRGIN teflon is used insulation resistance of around 10^15 ohms is possible ('VIRGIN teflon' is a solid piece of new teflon material which has been machined to shape and has not been welded together from powder or grains). The material of the rest of the CIRCUIT board need not have particularly high insulation resistance.

[023] 可以用Teflon墊片取代保護環(huán),保護那些高阻抗的電氣節(jié)點。VIRGIN Teflon材料的電阻可達1015歐(這是一種新型的固體片狀Teflon材料,它并非由粉末或顆粒狀原料熔融加工而成)。采用這種方法的優(yōu)點是,電路板其他部分的絕緣電阻不必非常高。



 

* - 本貼最后修改時間:2006-2-26 1:15:30 修改者:akaer

18樓: >>參與討論
akaer
回復:蔣軍2155
讓你受益是我們的快樂!

19樓: >>參與討論
likee
英語沒過六級,看起來有些困難
英語沒過六級,看起來有些困難

20樓: >>參與討論
jz0095
大致看了一下有疑問的地方
[012]This, of course, is a DC effect.
effect這里譯成效果可能好一些。趨膚后相當于增加了導線的電阻,但這是否就是作者指的DC含義?比較費解。

[14]方阻的單位
從前面的內容看,是公制,單位是平方米。其實1平方米的方阻跟1平方厘米的是一樣的。

21樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 5

ELECTROSTATIC DAMAGE (ESD)

靜電放電危害

[024]  Where resistances are very high, especially in conditions of low HUMIDITY, there is always the possibility of electrostatic charge and electrostatic damage. A full discussion of electrostatic damage (ESD) and its prevention will be found in ANALOG Devices' Application Note on the subject, which is available free of charge from ANALOG Devices.2

[024]  在電阻比較大且濕度比較低的環(huán)境中,容易出現(xiàn)靜電積累(electrostatic charge)和靜電放電的現(xiàn)象。有關靜電放電的深入探討請參閱ADI公司的相關應用筆記[參考文獻2],這些資料都是免費的。

[025]  This application note describes procedures to minimize the risk of electrostatic damage to sensitive devices. The basic principle of all ESD protection is to prevent a vulnerable ITEM from being in the path of a discharge. Many of the precautions used in factories are designed to minimize the possibility of any damaging discharge, even in the event of carelessness. When experienced engineers handle ICs they may dispense with most of the ESD protection apparatus and merely ensure that the IC is never in any potential discharge path: when taking a CIRCUIT from conductive foam, touch the foam to equalize charge before touching the CIRCUIT, similarly touch the foam with the hand before inserting the CIRCUIT in it, and hold your colleague's hand BEFORE passing the IC.

[025]  靜電放電會損壞敏感的電子器件,本文將介紹一些降低其破壞性的手段。所有ESD防護方法的基本原理都是讓被保護對象脫離靜電的放電路徑。工廠里有很多這方面的預防措施,用于消除破壞性的靜電放電,包括因疏忽造成的靜電放電。有經(jīng)驗的工程師們會用可防范ESD的方式拾取芯片,確保芯片與靜電放電路徑隔離。比如,用手從導電海綿上拾取芯片時,在觸摸芯片之前,先用手觸摸海綿,讓人體和海綿的電荷達到平衡。同理,將芯片安放到導電海綿上之前,要先用手觸摸海綿;將芯片遞交給同事之前,要先和同事握手。



[026]  All integrated CIRCUIT structures are vulnerable to damage from the high voltages and high peak currents involved in even small electrostatic discharges but PRECISION ANALOG CIRCUITs suffer from a special disadvantage - the CIRCUITry used to protect integrated CIRCUIT structures from ESD can often degrade the ANALOG accuracy of the CIRCUIT where it is employed. Thus we have the choice between high performance and a high degree of protection. Which we choose will depend upon individual circumstances but it is essential to realize that the choice must be made - and if it is made in favour of accuracy then the CIRCUIT involved must not be exposed to electrostatic discharge.

[026]  盡管ESD脈沖的能量不大,但是由靜電放電產生的高電壓和高峰值電流可以導致集成電路的損壞。常用的偏置電流極低的精密模擬電路更容易受到破壞,這是因為用來防止靜電放電的傳統(tǒng)輸入保護結構會增加輸入漏電流,從而降低電路性能。這樣一來,就必須根據(jù)實際系統(tǒng)的情況,在性能與防護能力之間進行權衡。不過,無論如何都要記住,不要讓電路遭受靜電放電。

[027]  A PRECISION ANALOG CIRCUIT exposed to ESD may not fail totally, but merely suffer degradation of its ANALOG performance, and possible reduction of life expectancy. When an IC is returned to ANALOG Devices for failure analysis of inadequate performance the first check that is made when the PACKAGE is opened is a visual inspection for evidence of electrostatic damage - and this is found in a large percentage of cases.

[027]  精密模擬電路在遭受ESD的侵襲之后可能不會立即失效,但是器件的性能會下降,而且使用壽命會縮短。ADI公司在分析返修器件時,第一項工作就是檢查外觀,看是否有靜電放電的痕跡。實踐證明,ESD在各種失效原因中占有很大的比重。

[028]  An interesting example of an unobvious effect of ESD occurred in Finland, where very cold winters produce very low HUMIDITY and particularly severe electrostatic problems. A customer complained that the AD549 low bias current BIFET op-amp had poor LONG- term reliability and that its noise performance deteriorated over a few years of use.

[028]  ESD導致的損壞往往不易察覺,有個芬蘭用戶的例子能夠說明這一點。芬蘭的冬季非常寒冷,空氣濕度很低,容易出現(xiàn)嚴重的靜電危害。該地區(qū)的一個客戶抱怨AD549這種低偏置電流BIFET輸入型運算放大器的長期可靠性很差,用了沒幾年時間,噪聲指標就惡化了。



[029]  The AMPLIFIER was being used as a unity gain buffer with an electrochemical cell and the non-inverting input was connected to a platinum electrode and to nothing else. In use this electrode was immersed in electrolyte but after use it was washed (automatically) in deionized water and air dried. It was then left unconnected until the machine was next used.

[029]  該用戶的電路中,放大器用作緩沖器,其反相端除了與電池的一個白金電極相連之外,沒有其他電氣連接。電池在使用時,要浸入到電解液中,使用完畢則要用去離子水對其進行清洗(自動完成),之后自然風干。然后電極就一直處于開路狀態(tài),直到下一次投入使用。

[030]  Although there was no possibility of the electrode being touched at this time (it was in the very center of the machine) it could encounter random particles of electrostatically charged dust - and the PULSE currents as these dust particles discharged were sufficient to cause gradual deterioration of the noise figure. As soon as arrangements were made to ground the electrode when it was not in use (with an NC reed RELAY for mini- mum leakage) the problem disappeared.

[030]  雖然人們不可能觸摸到電池(電池位于設備內部比較深的位置),但是它仍然會時常遭受帶靜電的浮塵的侵害,正是浮塵在放電時產生的脈沖電流導致了該器件噪聲指標嚴重劣化。后來,我們采取一些措施,讓電池在不使用的時候良好接地(用一個簧片式常閉繼電器消除放電電流),這個問題就再也沒有出現(xiàn)。


22樓: >>參與討論
akaer
回復jz0095
[012] 對“DC effect”我不得要領,后面再考慮。

[014] 您說的“方阻”是什么意思?

23樓: >>參與討論
iC921
聯(lián)系上下文,我覺得[012]開頭應當為這樣來:
jz0095 發(fā)表于 2006-3-2 01:52 模擬技術 ←返回版面    

大致看了一下有疑問的地方

[012]This, of course, is a DC effect.
effect這里譯成效果可能好一些。趨膚后相當于增加了導線的電阻,但這是否就是作者指的DC含義?比較費解。

[14]方阻的單位
從前面的內容看,是公制,單位是平方米。其實1平方米的方阻跟1平方厘米的是一樣的。

================

>>參見[011]處:

[011] As an illustration of the effect of PCB track resistance consider a 16-bit ADC with a 5k ohm input resistance which has 5 cm of 0.25 mm PCB track between it and its signal source. This track has a resistance of approximately 0.09 ohms and introduces a gain error of 0.09 ohms / 5000 ohms (0.0018%) which is well over 1 LSB (0.0015% for 16 bits).

[011] 下面用一個16位模數(shù)轉換器的例子來說明PCB導線電阻對性能的影響。假設信號源到ADC的導線長度為5cm,線寬0.25mm,ADC的輸入電阻為5kΩ。那么導線的電阻大約是0.09ohm,將產生0.09/5000(0.0018%)的增益誤差,這已經(jīng)超出了1LSB(對于16位ADC,1LSB為0.0015%)。

這里所計算的只是直流電阻,而沒有考慮交流阻抗(趨膚效應)。從這個意義上理解,“This, of course, is a DC effect. At high frequencies we must also consider the "skin effect" where inductive effects cause currents to flow ONLY in the surface of conductors.”應當譯為:

當然,這只是直流方面的效應。對于高頻,還必須考慮電感效應所引起的電流只在導體的表面流動的“趨膚效應”。

我感覺這樣比較好。akaer不必將其引到定義上來是不是看上去顯得更自然些?


“方阻”我也不太懂....不過,這個詞很有意思,好象很專業(yè)的樣子。勞請詳細解釋。

* - 本貼最后修改時間:2006-3-3 0:09:26 修改者:iC921

24樓: >>參與討論
jz0095
方阻
這是混合集成電路中用到的術語,即正方型片電阻的片電阻率。當厚、薄膜電阻材料的電阻率一定、厚度一定時,總電阻就取決于電阻的長寬尺寸。

基于上面的條件,取方阻有這樣的好處:無論尺寸如何變,也無論單位尺寸量綱是什么,只要是方型,它們的阻值就是相同的。比如一個1mm見方的電阻為10歐,將其長度增加10倍,電阻就變成100歐;如果再將寬度加大10倍,這100歐就又變回到10歐。

在混合集成電路的電阻設計中,人們選用不同的方阻作為不同的基準。對于不同的電阻,只要在所選基準的基礎上計算其長寬比就大致OK了。比如片電阻率(方阻)為10歐姆,即10歐/口,100歐=(10歐/口)x(L/W),其中L/W=10。精度由激光切割來修正。

方阻寬度的選擇要考慮功率容量的因素,在高頻下還要考慮分布電感、電容和傳輸線的效應。

25樓: >>參與討論
akaer
回復jz0095和iC921
[012] 同意ic921的判斷,有種茅塞頓開的感覺!

[014] “方阻”的解釋對我而言還是挺新鮮的:),對照了原文,感覺只能這么解釋。

26樓: >>參與討論
iC921
客氣了,偶然所得還是有的嘛
對我來說,買彩票的話有中彩的可能了?

27樓: >>參與討論
jz0095
同意IC921對[012]的解釋
是要聯(lián)系上下文來理解。

28樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 6

Parasitic effects in Resistors

電阻器寄生效應

[031]  When we MODEL a CIRCUIT, either informally or with a program such as SPICE, we generally assume that a RESISTOR is a simple resistant. In fact any RESISTOR is a much more complex DEVICE containing, at the very least, an inductance, a noise source, a CAPACITOR and two thermocouples.

[031]  在分析電路的時候,不論是粗略分析還是借助于SPICE這樣的軟件,通常都會視電阻器為純電阻。然而,電阻器的電路模型遠不是這么簡單,它包含更多的內容,至少包含一個電感、一個噪聲源和兩個熱電偶。

Inductive RESISTORs

電阻器的電感特性

[032]  All RESISTORs have some inductance (as we shall see, a straight piece of wire has some inductance) but wire-wound RESISTORs actually consist of a COIL of wire, which must inevitably be inductive. Even if the COIL is "non- inductive' and consists of N clockwise turns and N anticlockwise turns there will still be some mismatch and residual inductance. Residual inductance values of up to 20uH can be expected in "non-inductive" wire- wound RESISTORs with values below 10 k ohms, although above 10k ohms the reactance of such a RESISTOR is more likely to be a capacitance of around 5 pF.

[032]  電阻器多多少少都有些電感(即便是一段直導線也有電感),線繞電阻本身就是一個線圈,因此必定具有電感特性。所謂“無電感”線繞電阻(一半匝數(shù)的線圈按順時針方向纏,另一半按逆時針方向纏,從而使兩部分線圈產生的電感互相抵消)也會因為某些不匹配而帶有電感。10k ohms以下的“無電感”線繞電阻器的電感量不大于20uH,而10k ohms以上的電阻器,其電抗特性體現(xiàn)為電容,大約為5pF。

[033]  Some film RESISTORs are also inductive, consisting of a spiral of resistive material on a cylindrical ceramic body. Again values of a few uH are typical. High frequency CIRCUITs must not use inductive RESISTORs since their impedance is not equal to their resistance and, indeed, varies with frequency. Even low frequency CIRCUITry, where the inductance of the RESISTORs would not seem to be a problem, may suffer from instability arising from unforeseen HF effects of RESISTOR inductance (the transistors used in low frequency op-amps frequently have Ft of up to 1 GHz).

[033]  有些薄膜電阻器,是通過在電阻性薄膜上進行螺旋的槽式切割而制成,通常其電感量為幾個uH。在高頻電路中不能使用電感較大的電阻器,因為它們的阻抗不等于電阻,而且大小隨頻率而變化。即使是在低頻電路中,雖然電阻的電抗分量很小,但是由于某些難于預見的高頻源(低頻運放內的晶體管的頻率高達1GHz),仍然會影響電路的穩(wěn)定性。
[譯者注]:部分文字摘錄自《ADI產品技術指南》(高光天 1997)P183


* - 本貼最后修改時間:2006-3-10 23:13:56 修改者:akaer

29樓: >>參與討論
iC921
[031]
[031]  When we MODEL a CIRCUIT, either informally or with a program such as SPICE, we generally assume that a RESISTOR is a simple resistant. In fact any RESISTOR is a much more complex DEVICE containing, at the very least, an inductance, a noise source, a CAPACITOR and two thermocouples.
[031]  在分析電路的時候,不論是粗略分析還是借助于SPICE這樣的軟件,通常都會視電阻器為純電阻。然而,電阻器的電路模型遠不是這么簡單,它包含更多的內容,至少包含一個電感、一個噪聲源和兩個熱電偶

>>黑體處,看不出沒有“電路模型”的含義。

[032]  電阻器多多少少都有些電感(正如我們所知道的,即便是一段直導線也有電感)


[032]  電阻器多多少少都有些電感(即便是一段直導線也有電感)

30樓: >>參與討論
akaer
回復IC921
[031] 呵呵, 翻譯的時候的確是發(fā)揮了一下。我想改為“實際上所有的電阻器都更加復雜”,如何?

[032] 同意補充。

31樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 7


Thermal-Electric Effects

熱偶效應

[034]  Wire wound RESISTORs have another problem. The junction of the resistance wire and the LEAD forms a thermocouple which has a thermoelectric EMF of 42 pVPC for the STANDARD "Alloy 180" Nichrome junction of an ordinary wire wound RESISTOR. If a RESISTOR is chosen with the [more expensive] copper/nichrome junction the VALUE is 2.5 uV/℃. ("Alloy 180" is the STANDARD component LEAD alloy of 77% copper and 23% nickel.)

[034]  線繞電阻還有一個缺點——電阻絲和兩端引腳的連接處會形成兩個熱偶接點。對于普通的線繞電阻,熱偶由“Alloy 180” 合金與鎳鉻鐵合金(Nichrome)構成,具有42uV/℃的熱偶電動勢;價格稍高些的銅線電阻,其熱偶由銅與鎳鉻鐵合金構成,具有2.5uV/℃的熱偶電動勢。(Alloy 180是一種由77%的銅和23%的鎳組成的合金,是制作元器件引腳的材料。)

[035]  Such thermocouple effects are unimportant at AC or where a RESISTOR is at a uniform temperature but if the dissipation in a RESISTOR, or its location with respect to heat sources, can cause one of its ends to be warmer than the other then there will be a net thermoelectric EMF which will introduce a dc error into the CIRCUIT. With a normal wire wound RESISTOR a temperature differential of ONLY 4% will introduce a dc error of 168 uV - which is greater than 1 LSB in a 10V/l6-bit SYSTEM.

[035]  在處理交流信號或電阻處于均勻溫度的場合,熱偶效應并不重要。但是,如果電阻因為自身發(fā)熱或它相對于熱源的取向引起電阻一端的溫度比另一端高,那么將產生熱偶壓差,從而在電路中引入直流誤差。對于普通的繞線電阻,4℃的溫差將引起168uVd的直流誤差,對于10V/16位采樣系統(tǒng),這個誤差相當于1LSB。

[036]  The problem may be minimized by mounting wire wound RESISTORs to ensure that temperature differentials are minimized. This may be done by ensuring that both LEADs are of equal length to equalize THERMAL conduction through them, by making any airflow (whether forced or natural convection) normal to the RESISTOR body, and by taking care that both ends of the RESISTOR are the same distance from any heat source on the PCB. Notwithstanding these precautions it is wiser to use RESISTORs with copper, rather than "Alloy 180" LEADs, and to site them as far as possible from any heat source.

[036]  調整電阻的安裝方式,盡量降低兩端的溫度差異,可以降低熱偶誤差。例如,讓電阻兩端的引腳長度相等以使熱阻相等;讓冷卻氣流(自然風冷或強制風冷)均勻地吹到電阻上;或者讓電阻兩端與PCB上的熱源的距離相等。不過,最好的辦法還是采用銅線電阻,并且遠離熱源。



[譯者注]:部分文字摘錄自《ADI產品技術指南》(高光天 1997

32樓: >>參與討論
iC921
我看這樣吧


[031] 呵呵, 翻譯的時候的確是發(fā)揮了一下。我想改為“實際上所有的電阻器都更加復雜”,如何?

-----------
[031] 實際上中的電阻器遠比這樣的要復雜

可以嗎?原本就好好的。不過,整句處理更好:

[031]  When we MODEL a CIRCUIT, either informally or with a program such as SPICE, we generally assume that a RESISTOR is a simple resistant. In fact any RESISTOR is a much more complex DEVICE containing, at the very least, an inductance, a noise source, a CAPACITOR and two thermocouples.
[031]  在分析電路的時候,不論是粗略分析還是借助于SPICE這樣的軟件,通常都會視電阻器為純電阻。實際中的電阻器卻是一個極復雜的器件,它至少包含一個電感、一個噪聲源和兩個熱電偶。
其實滿簡單的:原來我只注意到了“模型”沒有注意到原文黑體處和后面的部分就是DEVICE的定語,這樣譯法又直又通順。但加一個“卻是”才顯得舒服。


33樓: >>參與討論
akaer
回復ic921
[031] 同意您的修改。您真是個認真的人。

34樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 8

STABILITY&MATCHING


穩(wěn)定性與匹配

[037] THERMAL effects other than thermocouple effects will also affect the accuracy of CIRCUITs using RESISTORs. Resistors are never completely stable with temperature and if either the temperature coefficients, or the actual temperatures of two RESISTORs in a PRECISION CIRCUIT are mismatched then the performance of the CIRCUIT will suffer. Temperature mis- match of two identical RESISTORs in similar environments may arise from differences in self-heating or other causes.3

[037] 除了電阻的熱偶效應以外,電阻的熱效應也會影響電路的精度。電阻器的阻值總是隨溫度變化而變化的。在高精度電路中,如果兩只電阻器的溫度系數(shù)有差異,或者其周圍的氣溫不同,就會出現(xiàn)“失配”(mis-match)的現(xiàn)象,電路精度就會受到影響。即便在相同環(huán)境中工作的兩只電阻器,也會因為自身發(fā)熱等原因出現(xiàn)失配問題。[注3]

[038] Typical temperature coefficients of discrete RESISTORs are apt to be around 100 ppm/℃ or more. The best way to minimize the effects of RESISTOR temperature coefficients and to eliminate the effects of different RESISTOR temperatures is to ensure that all RESISTORs whose RESISTOR matching affects the accuracy of a SYSTEM are built on a SINGLE substrate. This substrate may be the glass or ceramic substrate of a thin film RESISTOR network.

[038] 分立電阻元件的典型溫度系數(shù)大概是100PPM/℃左右。要降低溫度系數(shù)差異的影響,以及保證不同的電阻器具有相同溫度,最好的方法就是讓所有的電阻都位于同一個基座上。比如在玻璃或者陶瓷上制作的薄膜電阻網(wǎng)絡。

[039] A better alternative, when possible, is to use an integrated CIRCUIT having LASER trimmed thin film RESISTORs on the SILICON substrate of the IC. The temperature coefficient of such RESISTORs can be well below 20 ppm/℃, and the differential temperature coefficient between two RESISTORs on the same substrate is of the order of 0.5 ppm/℃ or less.

[039] 還有一個好辦法就是盡量使用內置電阻器的集成電路,那是一種經(jīng)過激光修正工藝處理的薄膜電阻器,位于集成電路的襯底上。那些電阻的溫度系數(shù)能做到非常小,往往低于20ppm/℃,而且不同電阻間的溫度系數(shù)的差異很小,能做到0.5ppm/℃的數(shù)量級甚至更小。


圖11.15


35樓: >>參與討論
iC921
黑體處怎么想到的?我從來沒想到過,學習了!


[037] THERMAL effects other than thermocouple effects will also affect the accuracy of CIRCUITs using resistors. Resistors are never completely stable with temperature and if either the temperature coefficients, or the actual temperatures of two resistors in a PRECISION CIRCUIT are mismatched then the performance of the CIRCUIT will suffer. Temperature mis-match of two identical resistors in similar environments may arise from differences in self-heating or other causes.3

[037] 除了電阻的熱偶效應以外,電阻的熱效應也會影響電路的精度。電阻器的阻值總是隨溫度變化而變化的。在高精度電路中,如果兩只電阻器的溫度系數(shù)有差異,或者其周圍的氣溫不同,會阻值的“失配”影響電路的性能。兩只工作在同樣環(huán)境中的同樣的電阻器,也會因為自身發(fā)熱存在差異或其它原因而引起溫度失配。[3]
2 Temperature mis-match of  還有點不清楚,先這么來一下吧....
1 感覺:讓then有點因果關系比較好!


-----------------------------
[037] 除了電阻的熱偶效應以外,電阻的熱效應也會影響電路的精度。電阻器的阻值總是隨溫度變化而變化的。在高精度電路中,如果兩只電阻器的溫度系數(shù)有差異,或者其周圍的氣溫不同,就會出現(xiàn)“失配”(mis-match)的現(xiàn)象,電路精度就會受到影響。即便在相同環(huán)境中工作的兩只電阻器,也會因為自身發(fā)熱等原因出現(xiàn)失配問題。[注3] 

36樓: >>參與討論
adamzhao
akaer 是 亞嵌小組 的嗎?
好奇,呵呵!

thermocouple 物理上一般譯為:熱電,熱電偶


37樓: >>參與討論
akaer
回復ic921和adamzhao
你們的建議挺好的! :)

adamzhao,我的ID的來歷很簡單:以前我參加過AKA嵌入式小組的周末講座,挺受感動,就起了這個名字宣傳他們,也鼓勵自己。我當然也夢想成為AKA的成員,但差距太大,所以還不是。

38樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 9

VOLTAGE VARIATION OF RESISTANCE

電阻

[040] It is not possible to fabricate very high resistances on thin film or IC substrates, and high VALUE discrete RESISTORs are considerably less stable than lower VALUE ones. It is inadvisable, therefore, to rely on the stability of high VALUE RESISTORs for the performance of a SYSTEM. Some types of high VALUE RESISTOR have another imperfection: they have a slightly non-linear voltage/current curve and do not obey Ohm's Law accurately.

[040] 在薄膜或硅片上無法制作高阻值的電阻,另外,高阻值的分立器件電阻器與阻值較低的電阻器相比,穩(wěn)定性方面也差很多。因此,讓系統(tǒng)的性能依賴于高阻值電阻的穩(wěn)定性的做法是不可取的。有些類型的高阻值電阻器還有另外一個缺陷——其伏-安特性曲線呈輕微的非線性,并不完全符合歐姆定律。


圖11.16

JOHNSON NOISE

熱噪聲(約翰遜噪聲)

[042] A final "imperfection" of RESISTORs is an inconvenience but cannot properly be regarded as an imperfection as it is a fundamental property of all RESISTORs: THERMAL or Johnson noise.

[042] 關于電阻的非理想特性,最后一項內容是熱噪聲,也稱為約翰遜噪聲。其實這并不能稱為完全意義上的非理想特性,它是電阻的固有性質,任何電阻器都不例外。


圖11.17

[043] At any temperature above absolute zero all RESISTORs have noise due to THERMAL motion of their structure. This noise, which is described by

[043] 當溫度在絕對零度以上,由于電荷載流子的熱運動,所有電阻都有熱噪聲。熱噪聲的計算公式如下:


公式11.1

(Where k is Boltzmann's constant: 1.38E- 23 J/K)

其中k為波爾茲曼常數(shù)(1.38x10^23J/K)。經(jīng)驗規(guī)則表明,1kohm電阻在室溫下具有的噪聲為4nV/Hz^1/2。

[044] Johnson noise is present in ALL RESISTORs and can ONLY be reduced by reducing R, the resistance itself, B, the bandwidth of interest, or T, the temperature. Since the function involves a square root, the noise improvement for a drop in temperature from room temperature (298 oK) to liquid nitrogen (77 oK) is ONLY of the order of 50%, so cooling a RESISTOR, unless liquid helium is involved, is unlikely to be very profitable.

[044] 所有電阻器都有熱噪聲,由公式可知,可通過減小電阻、帶寬或者溫度的方法降低熱噪聲。由于噪聲與絕對溫度的平方根成正比,所以用降低溫度的方法降低噪聲通常沒有明顯效果。例如,將電阻的溫度由室溫(298K)降低到液態(tài)氮的溫度(77K),熱噪聲僅下降50%。因此,如果希望用降低溫度的方法降低熱噪聲,除非使用液態(tài)氦,否則效果不會很明顯。

[045] Johnson noise is PUREly an effect of resistance. The Johnson noise of complex impedances consists ONLY of the Johnson noise of the resistive PART of the impedance, so PURE capacitance or inductance does not have Johnson noise, even though it has an impedance.

[045] 熱噪聲純粹是電子熱運動——電阻的體現(xiàn)。電抗器的熱噪聲等于其電抗中阻抗部分的熱噪聲,所以說理想電容器、理想電感器雖然有電抗,但是并沒有熱噪聲。


電路中所有電阻產生的噪聲及其帶來的影響是總要考慮的問題。實際上,只有輸入電路、反饋電路、高增益電路及前端電路的電阻才可能對總電路噪聲有上述明顯影響。
[部分文字摘自《ADI產品技術指南》(1997 高光天)]

39樓: >>參與討論
adamzhao
偶也在看這篇文章 :-)
[045] Johnson noise is PUREly an effect of resistance. The Johnson noise of complex impedances consists ONLY of the Johnson noise of the resistive PART of the impedance, so PURE capacitance or inductance does not have Johnson noise, even though it has an impedance.

熱噪聲純粹是電阻的效應。復阻抗的熱噪聲僅僅是電阻部分的熱噪聲,因此理想的電容器或電感器雖然有阻抗,但并沒有熱噪聲。

【注】:
關于阻抗部分可以參考一下英文版的電磁學或AGILENT的impedance maeasurement HANDBOOK(pdf檔),里面這些概念解釋的比較清楚!

PS:這篇文章講的太好了,各個重要的方面都講到了!偶現(xiàn)在總是在睡覺前讀一段,呵呵!

40樓: >>參與討論
adamzhao
我說的是akaer正在翻譯的這篇,呵呵!
不過impedance measurement HANDBOOK也不錯,偶原來就是參考這篇文章給老板科普了一把阻抗測量,呵呵

41樓: >>參與討論
iC921
嘿嘿,似乎是你這篇有不同尋常的細膩!
沒時間搞了,不然和你一起玩掉它....

42樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 10


CAPACITANCE

電容

STRAY CAPACITANCE

分布電容

[046] Where two conductors are not SHORT- CIRCUITed together, or totally screened from each other by a conducting (Faraday) screen, there is a capacitance between them. There will therefore be a large NUMBER of CAPACITORs associated with any CIRCUIT, which may or may not be considered in models of the CIRCUIT. Where high frequency performance matters (and even DC and VLF CIRCUITs may use devices with high Ft and therefore be vulnerable to HF instability) it is very important to consider the effects of stray capacity.

[046]  兩個導體,只要沒有短路或被別的導體隔開,它們之間就存在電容。從這個角度來看,任何電路中都大量存著可能不為人知的電容器,在為電路建模的時候,人們不一定能意識到它們的存在。對于高頻電路,分析分布電容的影響是非常重要的。(即使是DC電路和VLF電路,由于可能會用到具有高FT的器件,因此也會存在高頻穩(wěn)定性的問題。)

[047] Any basic textbook will provide formulas for the capacitance of parallel wires, concentric spheres and cylinders, and many other configurations.4 The ONLY example we need consider in this seminar is the parallel PLATE CAPACITOR, which is formed by conductors on opposite sides of a PCB.

[047]  在任何一本基礎教材中,都會針對平行導線、同軸球體、同軸電纜以及其他形式的位置關系給出分布電容的計算公式。本文僅就平板電容這樣一種PCB里常見的形式進行討論。

[048] Neglecting edge effects, the capacitance of two parallel PLATEs of area A mm2 and separation d mm in a medium of dielectric constant Er relative to air is

[048]  邊緣泄漏,兩個平面狀導體面積為A mm2,間距d mm平行放置,相對介電常數(shù)為Er,則其電容為:


公式P8-02


插圖11.18

[049] From this formula we can calculate that for general purpose PCB material (Er -- 4.7, d = 1.5 mm) the capacitance between conductors on opposite sides of the board is just under 3pF/cm2. In general such capacitance will be parasitic, and CIRCUITs must be designed so that it does not affect their performance, but it is possible to use PCB capacitance in place of small discrete CAPACITORs. However the dielectric properties of common PCB materials (Teflon is an expensive exception) cause such CAPACITORs to have a rather high temperature coefficient and to have poor Q at high frequencies, which makes them unsuitable for many applications.

[049]  根據(jù)這個公式可以計算出普通PCB(Er = 4.7, d = 1.5mm)兩個導體面之間的電容小于3pF/cm2。通常情況下,這個電容被視為分布電容,設計電路的時候要確保電路性能不受到這個電容的影響。有時可以利用分布電容,取代電路中的小型分立電容器,不過,由于受到普通PCB材料特性的影響,分布電容的大小會隨著溫度變化而顯著變化,而且在高頻時的Q值很低,因此很多情況下沒有使用價值。


43樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 11

CAPACITIVE NOISE & FARADAY

電容噪聲與法拉第屏蔽

[50] There is a capacitance between any two conductors separated by a diELECTRIC (air or vacuum is a diELECTRIC). If there is a change of voltage on one there will be a movement of charge on the other. The basic MODEL is shown in Figure 11.19.

[50] 被絕緣體(包括空氣和真空)分隔開的任何兩個導體之間都存在電容。兩個導體中的任一個導體,如果其電位發(fā)生變化,則另外一個導體的電位也會相應地變化;镜碾娐纺P鸵妶D11.19。


插圖11.19

[51] It is evident that the voltage coupled into Z1 may be reduced by reducing the signal voltage, Vn, the frequency involved, the capacitance, or Z1, but frequently none of these can be changed. The best solution is to insert a grounded conductor (known as a Faraday SHIELD) between the noise source and the CIRCUIT which it affects.

[51] 顯然,要降低耦合到Z1上的電壓,可以減小信號電壓Vn,或者降低信號頻率,還可以減小電容,即容抗Z1,但是,很多時候這三者都無法做到。這時最好的解決辦法就是在噪聲源與電路之間加入一個接地的導體——這種做法稱為法拉第屏蔽。

[52] The Faraday SHIELD is easily implemented and almost invariably successful. For this reason capacitively coupled noise is rarely an intractable problem. However, to be effective the SHIELD must completely block the ELECTRIC field between the noise source and the SHIELDed CIRCUIT and must be connected so that the noise current returns to its source without flowing in any PART of the CIRCUIT where it might introduce conducted noise. A conductor intended as a Faraday SHIELD must never be left unconnected as this almost always increases capacity and exacerbates the problem.

[52] 法拉第屏蔽簡便易行而且收效顯著,有了它,電容耦合噪聲幾乎完全可以抑制掉。不過,使用法拉第屏蔽時,必須滿足兩個條件:[疑慮]要將被保護電路完全封閉在屏蔽體內(完全切斷噪聲源與被保護電路之間的電場耦合路徑);屏蔽體必須接到噪聲源,以便噪聲電流返回噪聲源而不是流入被保護電路造成傳導干擾。用于法拉第屏蔽的導體絕對不能懸浮,否則會增加耦合電容,讓干擾更嚴重。


插圖11.20

[53] An example of this problem is seen in side brazed ceramic IC PACKAGEs. These DIP PACKAGEs have a small square conducting kovar lid soldered onto a metallized rim on the ceramic PACKAGE top. PACKAGE MANUFACTURERs offer ONLY two options: the metallized rim may be connected to one of the corner pins of the PACKAGE or it may be left unconnected. Most LOGIC CIRCUITs have a ground pin at one of the PACKAGE corners and therefore the lid is grounded. Many ANALOG CIRCUITs do not have a ground pin at a PACKAGE corner and the lid is left floating - such CIRCUITs turn out to be far more vulnerable to ELECTRIC field noise than the same chip in a plastic DIP PACKAGE where the chip is completely unSHIELDed.

[53] 下面以集成電路的“表面嵌銅”(Side brazed)陶瓷封裝為例說明這個問題。這是一種雙列直插(DIP)陶瓷封裝,其頂部有一個金屬框,框內焊接一個柯伐合金材質的蓋子。在出廠時,集成電路廠商會提供兩種選擇:要么將金屬框與某一個引腳連接,要么懸浮。絕大多數(shù)的邏輯器件的接地引腳都設計在封裝的某個角,所以金屬框可以方便地接地。而很多模擬器件的接地引腳并非位于封裝的角附近,所以金屬框常常懸浮。同樣的器件,封裝帶有屏蔽體但屏蔽體懸浮的器件與塑料DIP器件(芯片處于完全無屏蔽狀態(tài))相比,前者更容易受到電場噪聲的影響。


插圖11.21

[54] Whatever the environmental noise level, it is GOOD practice for the user to ground the lid of any side brazed ceramic IC where the lid is not grounded by the MANUFACTURER - this can be done with a wire soldered to the lid (this will not damage the DEVICE as the chip is thermally and ELECTRICally isolated from the lid). If soldering to the lid is unacceptable a grounded phosphor-bronze clip may be used to make the ground connection, or conductive PAINT from the lid to the ground pin. Never attempt to ground such a lid without verifying that it is, in fact, unconnected, as occasionally DEVICE types will be found with the lid connected to a POWER supply rather than to ground!

[54] 對于采用“表面嵌銅”陶瓷封裝的集成電路而言,如果出廠時其屏蔽體是懸浮的,那么不論環(huán)境噪聲是否顯著,將屏蔽蓋接地總是有益的——只要在屏蔽蓋上(和地線之間)焊一根導線就可以了。(這樣做并不會損傷芯片,因為芯片和屏蔽蓋之間已經(jīng)熱隔離和電氣隔離。)如果實際應用不允許在屏蔽蓋上焊接,可以用磷銅片或者導電涂料使屏蔽蓋接地。將屏蔽蓋接地之前,務必確認屏蔽蓋的確是懸浮的,因為個別器件的屏蔽蓋設計成和電源相連,而不是接地!


插圖11.22

[55] One case where a Faraday SHIELD is impracticable is between the bond-wires of an integrated CIRCUIT chip. This has imPORTant consequences.

[55] 集成電路內部的芯片(chip)的引線(bond-wire)之間不能采用法拉第屏蔽。這引出了下面這個重要的問題。

[56] The stray capacitance between two chip bond-wires and their associated lead-frames is of the order of 0.2 pF. (Note this is 'of the order' NOT 'of the CLOSE order' - observed values generally lie between 0.05 and 0.6 pF.) If we have a high resolution converter (ADC or DAC) which is connected to a high speed data bus then each LINE of the data bus, which will be carrying noise with 2-5 V/ ns dV/dT, is connected to the converter ANALOG PORT via this stray capacitance. Whenever the bus is active intolerable amounts of noise will be capacitively coupled to the ANALOG PORT and will seriously degrade the performance of which the converter is capable.

[56] 芯片的兩根接合線及其各自的引線框架(leadframe)之間存在大約0.2pF的分布電容。(0.2pF只是一個平均值,實際的測量值通常在0.05pF~0.6pF之間。)假如將高分辨率數(shù)據(jù)轉換器(ADC或DAC)與高速數(shù)據(jù)總線相連,那么每一根數(shù)據(jù)線上的2~5V/ns的電壓瞬變(dV/dT),都會通過引線間的分布電容耦合進轉換器內部的模擬通道。只要數(shù)據(jù)總線上有電平變化,模擬接口都會受到其噪聲的影響,降低轉換器的性能。


插圖11.23

[57] Present TECHNOLOGY offers no cure for this problem, which also limits the performance possible from broadband monolithic mixed signal ICs having ANALOG and DIGITAL CIRCUITry on a SINGLE chip. However, it may be avoided quite simply by not connecting the data bus directly to the converter but by using a latched buffer as an interface. This solution costs money, occupies board area, reduces reliability (very slightly), consumes POWER and complicates design - but it does improve the signal-to-noise ratio of the converter. The designer must decide whether it is worthwhile in individual cases.

[57] 目前的工藝尚無法解決這個問題,同時這個問題也制約著寬帶單片混合信號電路(在一個芯片上同時存在數(shù)字電路和模擬電路)的技術進步。不過,只要讓轉換器通過一個緩沖器連接到數(shù)據(jù)總線,而不是直接連接數(shù)據(jù)總線,就可以輕易解決這個問題。這個辦法固然會增加成本,占用電路板面積,(極輕微地)降低可靠性,增加功耗并且增加設計的復雜度,但是的確可以提高數(shù)據(jù)轉換器的信噪比。實際應用中,設計師們應該認真考慮是否采用這個方法。


插圖11.24
[部分文字摘自《ADI產品技術指南》(1997 高光天)]


44樓: >>參與討論
iC921
辛苦了!
 
45樓: >>參與討論
akaer
回復IC921及各位
上周起事情多起來, 發(fā)貼少了,一直置頂,實在不好意思!

46樓: >>參與討論
iC921
不要客氣
雖然翻譯似乎有點被人冷落了,但這是最好的自身提高過程方法之一,而國內文獻中,要看到那么翔實實用是不容易的,因此,我一直是向這些帖子“偏心”的,也有所偏愛……

值得大家注意的是,因為外語不好而痛失良好的就業(yè)機會是大有人在的。

47樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 12
 

PARASITIC EFFECTS IN CAPACITORS

電容器的寄生特性

[058] Just as we are too willing to assume that a RESISTOR is a perfect RESISTOR, so do we underestimate the parasitic components associated with a CAPACITOR.html">CAPACITOR. Fig 25 shows the ideal, the general MODEL of a real CAPACITOR.html">CAPACITOR, and the simplified MODELs which are ade- quate for the analysis of non-ideal behavior in most applications.

[058] 正如我們常常將電阻器視為理想器件一樣,電容器的寄生特性也常常被忽略。圖25給出了理想電容器模型、實際電容器的模型及其簡化模型。在分析各類電路的非理想特性時,一般使用簡化模型即可。


插圖11.25

[059] Capacitors are used for coupling (passing AC signals while blocking DC), for decoupling (removing AC superimposed on DC in both POWER and signal circuitry), for builaing filters or frequency-selective networks, and for storing charge in "SAMPLE and hold" circuits (also known as "track and hold" circuits or SHAs, SAHs or THAs).

[059] 電容器的用途可以分為四種:
耦合:通交流,阻直流;
去耦:去除疊加在直流信號、直流電源上的交流信號;
濾波:用于濾波器或者選頻電路;
存儲:用于“采樣-保持”電路(SAMPLE and hold或Track and hold,簡稱SHA、SAH、THA)。



CAPACITOR LEAKAGE

電容器漏電

[060] In coupling and SHA applications the leakage of the CAPACITOR.html">CAPACITOR can be important. Electrolytic CAPACITOR.html">CAPACITORs, where the dielectric is formed by an electrochemical reaction, have relatively high leakage currents of microam- peres or even more and so are not used in applications where leakage matters. The leakage of electrolytic CAPACITOR.html">CAPACITORs is greater during the first few minutes of operation after a period of storage (the leakage current while the CAPACITOR.html">CAPACITOR is in use keeps the dielec- tric in GOOD condition and it may deteriorate slightly in storage) - this feature can be important in EQUIPMENT which must perform correctly after a LONG quiescent period.

[060] 耦合和存儲這兩類應用對電容器泄漏電阻有嚴格要求。電解電容的隔離電阻低,漏電流可達毫安級以上,不能用于對泄漏電流有嚴格要求的場合。電解電容在上電工作初期的漏電流會增大,隨后逐漸回落到正常水平,這是由于連續(xù)上電能使電介質保持活性,而長期的掉電存儲使電介質的活性降低。對于一些要求在長期保存之后能迅速進入正常工作狀態(tài)的設備,電解電容的這個特點要尤其引起設計者的注意。

[061] The leakage of tantalum electrolytic CAPACITOR.html">CAPACITORs is lower than that of aluminium ones and so in applications where capaci- tances of tens of microfarade or more (which can be easily achieved ONLY with electrolytic CAPACITOR.html">CAPACITORs) are required tantalum ones are used, despite their extra cost, if particu- larly low values of leakage current are neces- sary. At room temperature the leakage of alu- minium electrolytic CAPACITOR.html">CAPACITORs is of the order of 20 nA/pF and that of tantalum ones is 5

[061] 鉭電解電容比鋁電解電容的漏電小。雖然鉭電解電容不能象鋁電解電容那樣輕易提供幾十毫法的電容量,而且價格比較高,但是如果對漏電流有嚴格限制,那么還是得用鉭電容替代鋁電解電容。室溫條件下,鋁電解電容的漏電流約為20nA/uF,鉭電解電容則為5nA/uF。

[062] Another feature of electrolytic CAPACITOR.html">CAPACITORs, both aluminium and tantalum, is that most of them are polarized and require a DC bias for correct operation - a reverse bias may do damage and will certainly increase leakage (unpolarized electrolytic CAPACITOR.html">CAPACITORs, which may be biased in either direction, do exist but they are uncommon, and considerably larger than the polarized variety).

[062] 電解電容還有一個特點,那就是絕大多數(shù)都是有極性的,其兩端必須施加直流電壓才能正常工作。如果極性接反,電容就可能損壞,其漏電流也會增加。無極性電解電容雖然已經(jīng)問世,但是相比之下不常用,而且外形尺寸也比有極性電容大。

[063] Most other types of CAPACITOR.html">CAPACITOR have leakage resistances in excess of hundreds of gigohms so that for most applications their leakage currents can be disregarded.

[063] 其他種類的電容漏電流很小,漏電電阻均超過數(shù)百吉歐,對于絕大多數(shù)用途而言,其漏電流可以忽略不計。


48樓: >>參與討論
akaer
回復ic921
謝謝!

49樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 13

SERIES/LOSS RESISTANCE

等效串聯(lián)電阻

[064] The series resistance of CAPACITORs causes them to dissipate POWER when high AC currents are flowing in them. This can have serious consequences at RF and in supply decoupling CAPACITORs carrying high ripple currents but is unlikely to have much effect in PRECISION ANALOG CIRCUITry. The series inductance, however, can have very inconvenient consequences.

[064] 當交流電流通過電容器的等效串聯(lián)電阻時,將在該電阻上消耗能量,這對射頻電路的性能,以及紋波很大的電源中的去耦電容的壽命都是不利的,不過對高精度模擬電路不會有很大的影響。



INDUCTANCE OF CAPACITORS

等效串聯(lián)電感

[065] The transistors used in PRECISION ANALOG CIRCUITs have transition frequencies (Ft) of hundreds of MHz or even several GHz, even though the PRECISION CIRCUITry itself may be operating at DC or low frequencies. This makes it essential that the POWER supply terminals of such CIRCUITs should be decoupled properly at high frequency.

[065] 精密模擬集成電路的內部有很多晶體管,盡管這些晶體管本身工作在低頻甚至直流,但它們的過渡頻率[譯者疑慮](Ft)通常高達數(shù)百兆赫茲甚至數(shù)吉赫茲,因此,電路的電源引腳必須針對高頻很好地去耦。

[066] A common structure for CAPACITORs is two sheets of METAL foil separated by sheets of plastic or paper dielectric and formed into a roll. Such a structure has considerable self-inductance and behaves as an inductance rather than a CAPACITOR at frequencies of more than a few MHz. It is therefore inadvisable to use electrolytic, paper or plastic film CAPACITORs for decoupling at high frequencies.

[066] 電解電容器、紙介電容器和塑料薄膜電容器不適合用于高頻去耦。這些電容器基本上是由多層塑料或紙把兩張金屬箔隔開,然后卷成一個圓筒而制成。這種結構的電容具有相當大的自感,而且當頻率超過幾兆赫時主要起電感的作用。

[067] Monolithic ceramic CAPACITORs have very low series inductance (they are formed of a multilayer sandwich of METAL films and ceramic dielectric and all the films are joined to a bus-bar rather than being connected in series). They are therefore ideal for high frequency decoupling. However, monolithic ceramic CAPACITORs can be MICRO phonic, and some types may be self-resonant with comparatively high Q. Disc ceramic CAPACITORs, on the other hand, are sometime quite inductive, although less expensive.

[067] 對于高頻去耦更合適的選擇應該是片式陶瓷電容器,因為它們具有很低的等效串聯(lián)電感。片式陶瓷電容器是由多層夾層金屬薄膜和陶瓷薄膜構成的,而且這些多層薄膜是按照母線平行方式排布的,而不是按照串行方式卷繞的。片式陶瓷電容的不足之處是具有顫噪聲(即對振動敏感),所以有些片式陶瓷電容器可能會出現(xiàn)自共振,具有很高的Q值,因為串聯(lián)電阻值及與其在一起的電感值都很低。另外,碟形陶瓷電容器,雖然價格不太貴,但有時電感很大。

[068] The best way of ensuring that an ANALOG CIRCUIT is adequately decoupled at both high and low frequencies is to use a tantalum bead CAPACITOR in parallel with a monolithic ceramic one. The combination will have high capacitance but will remain capacitive at VHF frequencies. It is generally unnecessary to have a tantalum CAPACITOR on each individual IC, if there is less than 10 cm of reasonably wide PC track between each IC and the tantalum CAPACITOR it is possible to share one tantalum CAPACITOR among several ICs.

[068] 用電解電容器和片式陶瓷電容器并聯(lián)——例如用一枚鉭電解電容與一枚片式陶瓷電容并聯(lián)——可以使模擬電路在高頻和低頻都達到良好的去耦效果。這樣的組合不但可以實現(xiàn)比較大的電容量,而且在VHF頻段仍能保持電容特性。一般情況下,不必為每個集成電路都接一個鉭電容。如果幾個集成電路與鉭電容器之間的距離不大于10cm,而且PCB連線足夠寬,那么這幾個集成電路可以共用一個鉭電容。

[069] There is little point in taking great care in the choice of a non-inductive CAPACITOR if it is then unsuitably mounted. SHORT lengths of wire have appreciable inductance so HF decoupling CAPACITORs must be mounted as CLOSE as possible to the points that they are decoupling with SHORT, wide PC tracks. Ideally HF decoupling CAPACITORs should be surface-mount parts to eliminate LEAD inductance, but wire-ended CAPACITORs are permissible provided the DEVICE LEADs are no longer than 1.5 mm. It is also important to under- stand where HF decoupling currents should flow and why HF decoupling is more important at some points than at others - the subject is covered at some length in an ANALOG Devices Application Note5

[069] 電容擺放的位置很重要,如果電容的位置不合適,那么去耦的效果就會大打折扣。高頻條件下,即使是很短的引線也會帶有不可忽略的電感,因此去耦電容必須盡可能地靠近需要去耦的引腳,并且用短而粗的導線連接。最理想的高頻去耦電容應該是表面貼裝器件,對于帶引線的電容,只要引腳長度不超過1.5mm,也是適用的。另外,要了解高頻去耦電流的走向,以及為什么在某些時候必須格外重視高頻去耦。這方面的討論參見ADI的應用筆記(參考文獻5)。


插圖11.26

[070] HF instability in ANALOG CIRCUITs is more common than is realized. Oscillation at hundreds of MHz will cause serious malfunction of PRECISION CIRCUITry but may not affect an oscilloscope (indeed the presence of an oscilloscope probe may damp the oscillation, so that the CIRCUIT works ONLY when an oscilloscope is attached to it —— this is an important diagnostic clue). It is quite GOOD practice to use a broadband spectrum analyzer (say 1- 1500 MHz) and a low capacity FET probe to check for parasitic oscillation any ANALOG CIRCUIT which is malfunctioning for no obvious reason. This TEST will also show if the mal- function is due to the presence of a strong RF field from an external source.

[070] 模擬電路在高頻時出現(xiàn)不穩(wěn)定的情況比想象的要普遍。精密電路在頻率數(shù)百兆赫茲時出現(xiàn)的振蕩可能會造成電路異常,但是這不一定能在示波器上察覺到。示波器探頭常常能抑制振蕩,因此有些電路只能在示波器探頭接觸時正常工作,這也是判斷故障原因的一個典型特征。如果電路功能異常而又沒有明顯原因,那么可以用寬帶(如1~1500MHz)頻譜分析儀和低電容FET探頭檢查一下,看看是否存在寄生振蕩。這個辦法還可以檢驗出該故障是否由外部強烈射頻干擾源所引起。


50樓: >>參與討論
computer00
[096]第一句是意譯嗎?感覺直譯也可以啊
There is little point in taking great care in the choice of a non-inductive CAPACITOR if it is then unsuitably mounted.

如果電容安裝的位置不恰當?shù)脑,即使花很大精力去挑選一個無感電容,這也是沒啥效果滴~~~~~~~

51樓: >>參與討論
iQanalog
這也是沒啥效果滴~~~~~~~
=“還是無濟于事滴……”,更好的是“還是于事無補滴……”

52樓: >>參與討論
akaer
回復圈圈和IC921
你們倆動作好快啊!你們提醒得對,這句我意譯偏多了。

圈圈的直譯挺好的,就是略有些口語化了,要是采用的話整個譯文就時髦多了:)。

IC921改得很嚴肅,感覺象有個老先生一邊在墻根磕煙鍋一邊拉長聲音說話,呵呵。

大家都正確地表達了意思,譴詞造句方面嘛......領會精神吧。:)

53樓: >>參與討論
iC921
呵呵,我不過是想幫助人加深理解
 
54樓: >>參與討論
iC921
我要出去了,你們玩……
 
55樓: >>參與討論
cavalryman
看英文的不太理解,還是過來看看中文的
 
56樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 14
 

DIELECTRIC ABSORPTION

介質吸收

[071] Monolithic ceramic CAPACITORs are excel- lent for HF decoupling but they have considerable dielectric absorption, which makes them unsuitable for use as the hold CAPACITOR of an SHA. Dielectric absorption causes a CAPACITOR which is quickly discharged and then open-circuited to recover some of its charge. Since the amount of charge recovered is a function of its previous charge this is, in effect, a charge MEMORY and will cause errors in any SHA where dielectric absorption is present in the hold CAPACITOR.

[071] 片式陶瓷電容器非常適用于高頻去耦,但是由于它們的介質吸收較強,因此不適用于采樣保持器中的保持電容器。介質吸收能使快速放電后開路的電容器恢復一部分電荷,恢復電荷的數(shù)量是原有電荷的函數(shù),實際上這是一種電荷記憶效應。如果把這種電容器用作采樣保持放大器中的保持電容器,那么勢必對測量結果產生誤差。

[072] Capacitors For this application should therefore be selected to have minimal dielectric absorption. The best strategy is to use a SHA which is supplied with an internal CAPACITOR or where the SHA MANUFACTURER supplies the CAPACITOR with the SHA. If this is not possible (sometimes one may require a longer hold time - and hence extra capacity) a CAPACITOR should be chosen which has its low dielectric absorption (DA) specified on its data sheet.

[072] 用于采樣保持的電容器,其介質吸收應盡量低。最好的選擇是采用帶有內部保持電容的SHA,或者使用SHA廠商提供的配套電容。如果這些不能滿足實際要求(有的設計需要更長的保持時間,也就是更大的電容),就要選擇參數(shù)手冊中標明的介質吸收最低的電容器。

[073] Such CAPACITORs are normally plastic dielectric types (polystyrene, polypropylene or Teflon) but it is not safe to use just any plastic dielectric CAPACITOR with a SHA as special processing and testing is necessary to ensure that it has low DA. For use with a SHA a CAPACITOR should be chosen which is specified for low DA applications.

[073] 一般而言,聚脂型電容器的介質吸收最低,例如聚苯乙烯電容器、聚丙烯電容器和聚四氟乙烯電容器。不過,并非所有的聚酯型電容器都可以用于SHA,只有符合特定的工藝并通過檢測才能確保很低的介質吸收?傊,用于采樣保持的電容器,應選擇那些專用于低介質吸收應用的產品。


(插圖11.27)


* - 本貼最后修改時間:2006-4-16 16:38:01 修改者:akaer

57樓: >>參與討論
iC921
這個大家記住了,當然還有后面的!!
[071] 片式陶瓷電容器非常適用于高頻去耦,但是由于它們的介質吸收較強,因此不適用于采樣保持器中的保持電容器!

Dielectric absorption causes a CAPACITOR which is quickly discharged and then open-circuited to recover some of its charge.


----這句如何理解呢?為什么能這樣呢?


[072] 用于采樣保持的電容器,其介質吸收應盡量低。最好的選擇是采用帶有內部保持電容的SHA,或者使用SHA廠商提供的配套電容!

[073] 一般而言,聚脂型電容器的介質吸收最低,例如聚苯乙烯電容器、聚丙烯電容器和聚四氟乙烯電容器。不過,并非所有的聚酯型電容器都可以用于SHA,只有符合特定的工藝并通過檢測才能確保很低的介質吸收!



嘿嘿,想成為高手一定要多看E文文獻。何況這是譯好的。

58樓: >>參與討論
iC921
另,上傳圖片最好在BOLG里進行
不然我來。

這些天圖片很不正常的,還不知道要持續(xù)多久呢!

59樓: >>參與討論
computer00
這樣才叫介質吸收嘛,
Dielectric absorption causes a CAPACITOR which is quickly discharged and then open-circuited to recover some of its charge.

介質吸收能使快速放電后然后再馬上開路的電容器恢復一部分電荷


這有點像蓄電池,放完電的電池,過段時間又會恢復一些電出來。

60樓: >>參與討論
iC921
不懂,討教了,圈圈
----------------

1 介質吸收
    ↓
2 能使快速放電后  ←為什么要強調“快速”放電?
    ↓
3 然后再馬上開路的電容器 ←為什么要要馬上開路?不能等嗎?
    ↓
4  恢復一部分電荷 ←為什么是恢復一部分?好象是理所當然,呵呵

-----------------

這到底是一種什么邏輯?什么關系?

不好意思,我讀書的時候一起沒有讀到這塊……

61樓: >>參與討論
computer00
這個剛好就是介質吸收的特點了
1 充電  ←部分電荷被介質吸收
    ↓
2 能它快速放電后  ←快速放電,介質中的電荷來不及流到極板上釋放。而原本存儲在極板上的則不一樣,放電時馬上流走。
    ↓
3 然后再馬上開路的電容器 ←如果放電久點,那么介質中存儲的電荷,也被放走了,等下就不能恢復出電荷了。
    ↓
4  恢復一部分電荷 ←因為在電容充電之后,介質吸收的就是一部分嘛^_^,那么恢復,當然也只能是充電的一部分了。


這樣就不是理想電容的特性了,因為部分電荷被介質吸收了,在放電時不能被迅速的釋放出來。


這跟蓄電池很類似的。蓄電池在快速放電時,化學能來不及轉化成電能,電池電壓就會下跌,看起來就像沒電了,但斷開負載后
放置一段時間,化學能又轉換成電能,并存儲在極板上,電壓又恢復了。

為什么存儲在介質里面的電荷會恢復呢?這個跟介質的被極化有關。


以上是我個人的理解,并未見過專門這方面的介紹,可能有理解錯誤之處。

62樓: >>參與討論
hitxing
不錯
收藏

63樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 15


INDUCTANCE

電感

STRAY INDUCTANCE

分布電感

[073] All conductors are inductive and at frequencies the inductance of even quite SHORT pieces of wire may be important. The inductance of a straight wire of length L mm and circular cross-section with radius R mm in free space is

[073] 所有導體都有電感。高頻條件下,即使是一小段導線,也要充分考慮其電感。長度為L(mm)、圓形截面半徑為R(mm)、置于開放空間中的導體,可按照以下公式計算其電感:


(公式P13E1)

[074] The inductance of a strip conductor (an approximation to a PC track) of width W mm and thickness H mm in free space is

[074] 而PCB導線那樣的帶狀導體,設其寬度為W(mm)、厚度為H(mm)、置于開放空間中,其電感可按以下公式計算:


(公式P13E2)

[075] In real SYSTEMs these formulas both turn out to be approximate but they do give some idea of the order of magnitude of inductance involved. They tell us that 1 cm of 0.5 mm o.d. wire has an inductance of 7.26 nH and 1 cm of 0.25 mm PC track has an inductance of 9.59 nH - these figures are reasonably CLOSE to measured results.

[075] 由于實際電路的復雜性,以上公式只能作估算之用,不過,它可以幫我們建立對分布電感的感性認識。例如,1cm長的0.5o.d.的導線,其電感為7.26nH;1cm長、0.25mm寬的PCB導線,電感為9.59nH。這些數(shù)字與實際測量的結果是相當接近的。

[076] At 10 MHz an inductance of 7.26 nH has an impedance of 0.46 ohm and so can give rise to 1% error in a 50 ohm SYSTEM.

[076] 10MHZ頻率下,7.26nH的電感對應的感抗為0.46ohm,對于50OHM系統(tǒng),這將造成1%的精度誤差。


(插圖11.28)


64樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 16


MUTUAL INDUCTANCE

互感

[077] Another consideration regarding inductance is the separation of outward and return currents. As we shall discuss in more detail later, Kirchoff's Law tells us that current flows in CLOSEd paths - there is always an outward and return path. The whole path forms a SINGLE-turn INDUCTOR. If the area enCLOSEd by the turn is large the inductance, and hence the AC impedance, will also be large, whereas if the outward and return paths are CLOSE together the inductance will be much smaller. The principle is illustrated in Fig 11.29.

[077] 對于電感,要注意區(qū)別流出電感器的電流和流入電感器的電流。根據(jù)KCL定律,電流可以在閉合回路中流動,這意味著存在電流的“輸出路徑”和“返回路徑”,后文對此會進一步論述。閉合回路相當于一個單圈繞線電感圈,圈的包圍面積越大,電感量或者說感抗也就越大。如果使輸出路徑和返回路徑彼此靠近,線圈的電感量就會小得多。圖11.29說明了這個原理。



[078] The nonideal routing in Figure 11.29 has another drawback, the large area enCLOSEd by the conductor produces extensive external magnetic fields, which may interact with other CIRCUITs and cause unwanted coupling. Similarly the large area is more vulnerable to interaction with external magnetic fields, which can induce unwanted signals in the loop. The basic principle is illustrated in Figure 11.30 and is a common mechanism for the transfer of unwanted signals (noise) between CIRCUITs.

[078] 圖11.29中“不理想的形狀”還有另外一個缺點:由于電路環(huán)路面積大,會形成較強的電磁場,可能會干擾其他電路并產生有害的耦合。另一方面,基于同樣的道理,環(huán)路面積較大的電路,接收到的外來電磁干擾越多,可能會干擾電路工作。圖11.30顯示了電路間有害信號(噪聲)互相傳播的原理。



[079] As with most other sources of noise, as soon as we define the principle at work we can see ways of reducing the effect. In this case reducing any or all of the terms in the equations in Figure 11.30 will reduce the coupling. Reducing the frequency or amplitude of the current causing the interference may be impractiCABLE but it is frequently possible to reduce the mutual inductance between the interfering and interfered with CIRCUITs by reducing loop areas on both sides and, possibly, increasing the distance between them.

[079] 和大多數(shù)噪聲源一樣,只要知道了它是如何形成的,就能找到抑制噪聲的辦法。對于本例而言,減小圖11.30所示公式中的某個或全部參數(shù)值,就可以抑制耦合。一般說來,用降低引發(fā)干擾的電流的頻率和大小的方法來減少耦合是不容易做到的,但是,如果能減少干擾源電路和被干擾電路各自的環(huán)路面積,就可以降低二者之間的互感,同時,還可能增加這些電路的間距。


[080] Mutual inductance is a common problem in ribbon CABLES, especially when a SINGLE return is common to several signal CIRCUITs. Separate signal and return lines for each signal CIRCUIT reduces the problem, and using a CABLE with twisted pairs for each signal CIRCUIT is even bettor (but more expensive and often unnecessary).

[080] 帶狀電纜普遍存在較強的互感,尤其是當多路信號共用返回路徑的時候。給不同信號分配獨立的信號線和返回線可以抑制互感,用雙絞線傳輸信號效果尤佳(但這樣做會增加成本,而且通常沒有必要)。




[081] Shielding magnetic fields to reduce mutual inductance is sometimes possible but is by no means as easy as SHIELDing ELECTRIC fields with a Faraday SHIELD. HF magnetic fields are blocked by conductive material, while LF and DC fields may be screened by a SHIELD made of mu-metal sheet. Mu-metal is an alloy having very high permeability, but it is expensive, its magnetic properties are damaged by MECHANICAL STRESS, and it will saturate if exposed to too high fields. Its use, therefore, should be avoided where possible.

[081] 用法拉第屏蔽體可以屏蔽電場,同理,屏蔽磁場也可以降低互感,但是往往難以做到。對于高頻磁場,各種導體都可以起到良好的屏蔽作用;低頻和直流磁場則需要用鎳鐵高導磁合金(Mu-metal)來屏蔽。鎳鐵高導磁合金有很高的導磁率,其缺點是價格高,性能受機械應力的影響,而且在高強度的磁場作用下會發(fā)生磁飽和。因此,盡量不要使用這種方法。



65樓: >>參與討論
iC921
這個好東西是好東西,可要打字呀
夫人幫你沒?

66樓: >>參與討論
akaer
回復ic921
嘿嘿,謝謝斑竹關心,目前還是一個人翻譯。

67樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 17

RINGING

振蕩

[082] An INDUCTOR in series or parallel with a CAPACITOR forms a resonant, or "tuned', CIRCUIT, whose key feature is that it shows marked change in impedance over a small range of frequency (how SHARP the effect is depends on the Q of the tuned CIRCUIT). The effect is widely used to define the frequency response of narrow-band CIRCUITry but can also be a source of problems.

[082] 將電感與電容串聯(lián)或者并聯(lián),就構成了諧振(調諧)電路。諧振電路的特性是,在較小的頻率范圍內,其阻抗有很大的變化(變化的程度由諧振電路的Q值決定)。這種特性在調整窄帶電路的頻率響應方面得到了廣泛的應用,不過也帶來了一些問題。

[083] If stray inductance and capacitance (which may or may not be stray) in a CIRCUIT should form a tuned CIRCUIT then that tuned CIRCUIT may be excited by signals in the CIRCUIT and ring at its resonant frequency. A common example is shown in Figure 11.34 where the resonant CIRCUIT formed by an inductive POWER LINE and its decoupling CAPACITOR may be excited by PULSE currents drawn by the IC.

[083] 如果電路中的電感和電容(含分布電感、分布電容)形成了諧振電路,那么在電路中信號的激勵下,這個諧振電路就會在其固有諧振頻率處產生“振鈴”現(xiàn)象。圖11.34所示的例子中,電源線的電感與去耦電容形成了諧振電路,芯片工作時產生的脈動電流,可能會激勵該電路(產生振蕩)。

[084] The effect may be minimized by lowering the Q of the inductance, which is most.easily done by inserting a small resistance in the POWER LINE, CLOSE to the IC.

[084] 降低電感的Q值可以抑制諧振。只要在靠近芯片的地方加一個小電阻,就可以很容易地達到這個目的。


68樓: >>參與討論
iC921
RINGING都叫掁鈴好吧?
 
69樓: >>參與討論
akaer
回復IC921
是我錯了,正文用振鈴,標題卻用了振蕩。應該是振鈴的。

70樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 18


PARASITIC EFFECTS IN INDUCTORS

電感寄生效應

[085] Although inductance is one of the fundamental properties of an electronic CIRCUIT, INDUCTORs are less common as PRECISION components than resistors and CAPACITORs. This is because they are harder to manufacture, less stable, and less physically robust than resistors and CAPACITORs. It is relatively easy to manufacture stable PRECISION INDUCTORs with inductances from nH to tens or hundreds of uH, but larger valued devices tend to be less stable, and large.

[085] 電感是電路的固有特性之一。雖然如此,與電阻器和電容器相比,電感器很少被視為精密元器件。這是因為與電阻器和電容器相比,電感器難以制造,其性能不穩(wěn)定,結構也不夠牢靠。NH級和數(shù)百uH以下的電感器,制造起來還相對容易一些,而高電感量的電感器則不夠穩(wěn)定,體積也比較大。

[086] As we might expect in these circum- stances, CIRCUITs are designed, where possible, to avoid the use of PRECISION INDUCTORs. We find that stable PRECISION INDUCTORs are relatively rarely used in PRECISION ANALOG CIRCUITry, except in tuned CIRCUITs for high frequency narrow band applications.

[086] 因此,在設計電路時,應該盡量避免使用高精度的電感器。實際上,除了高頻窄帶調諧電路以外,精密的模擬電路中極難看到性能穩(wěn)定的精密電感的蹤影。

[087] Of course they are widely used in POWER filters, switching POWER supplies and other applications where lack of PRECISION is unimportant. The important features of INDUCTORs used in such applications are their current carrying and saturation characteristics, and their Q. If an INDUCTOR consists of a COIL of wire with an air core its inductance will be essentially unaffected by the current it is car- lying, but if it is wound on a core of a magnetic material (magnetic alloy or ferrite) its inductance will be non-linear since at high currents the core will start to saturate.

[087] 當然,在電源濾波器、開關電源以及其他一些對電感的精度要求不高的地方,電感器還是得到了廣泛地應用。在這類場合,電感器的載流能力、飽和特性和Q值是最重要的參數(shù)。對于一個無鐵芯(空氣充當鐵芯)的繞線電感器,其電感量與線圈中流過的電流大小無關;如果是有鐵芯(鐵磁性合金或鐵氧體)的繞線電感器,其電感量將呈現(xiàn)非線性,因為隨著載流量的增加,鐵芯會變得飽和。



[088] Such saturation will reduce the efficiency of the CIRCUITry employing the INDUCTOR and is liable to increase noise and harmonic generation.

[088] 飽和現(xiàn)象會降低電感在電路中應有的效能,由此可能導致電路噪聲增大,并產生諧波。

[089] As mentioned above, INDUCTORs and CAPACITOR together form tuned CIRCUITs. Since all INDUCTORs will have some stray capacity, all INDUCTORs will have a resonant frequency (which will normally be published on their data sheet) and should ONLY be used as PRECISION INDUCTORs at frequencies well below this.

[089] 如上所述,電感器和電容器接在一起就會形成諧振電路。既然所有的電感器都有一定的分布電容,因此所有的電感器都存在一個固有的諧振頻率(一般會在電感器的數(shù)據(jù)手冊上標明),只有在工作頻率遠遠低于諧振頻率的條件下,電感器才可以被視為精密電感。



71樓: >>參與討論
iC921
譯得不錯,但085中的N要用小寫n
[085] 電感是電路的固有特性之一。雖然如此,與電阻器和電容器相比,電感器很少被視為精密元器件。這是因為與電阻器和電容器相比,電感器難以制造,其性能不穩(wěn)定,結構也不夠牢靠。nH級和數(shù)百uH以下的電感器,制造起來還相對容易一些,而高電感量的電感器則不夠穩(wěn)定,體積也比較大。

72樓: >>參與討論
akaer
回復IC921
謝謝! 您看得真細!

73樓: >>參與討論
akaer
研討翻譯:ADI AN-280 混合信號電路的設計技術 19

Q OR "QUALITY FACTOR"

Q值與品質因數(shù)

[090] The other parasitic characteristic of INDUCTORs is their Q (or "Quality Factor"), which is the ratio of their reactive impedance to their resistance.

[090] 電感器另一個分布參數(shù)是Q值(也叫品質因數(shù)),定義為電感器電抗與電阻之比。


公式P16-1

[091] It is rarely possible to calculate the Q of an INDUCTOR from its DC resistance since skin effect (and core losses if the INDUCTOR has a magnetic core) ensure that the Q of an INDUCTOR at high frequencies is always lower than that predicted from DC values.

[091] 因為高頻時的趨膚效應,實際電感器的Q值總是低于按照直流參數(shù)推算出來的值,所以想要從電感器的直流電阻值計算其Q值幾乎是不可能的。

[092] Q is also a characteristic of tuned CIRCUITs (and of capacitors - but capacitors generally have sufficiently high values of Q that it may be disregarded for most practical purposes). The Q of a tuned CIRCUIT, which is generally very similar to the Q of its INDUCTOR (unless it is deliberately lowered by the use of an additional RESISTOR), is a measure of its band- width around resonance.

[092] Q值也用于表征調諧電路的特性。電容器的特性中也包含Q值,不過電容器的Q值通常都很高,實際應用中常常可以忽略。調諧電路的Q值定義為諧振頻率處的帶寬,當電路沒有加入降低Q值用的附加電阻器時,該值與電路中電感器的Q值非常接近。


插圖11.37

[093] LC tuned CIRCUITs rarely have Q of much more than 100 (3 dB bandwidth of 1%) but ceramic resonators may have Q of thousands and quartz crystals have Q of tens of thou- sands.

[093] LC調諧電路的Q值通常不超過100(3dB帶寬只占轉折頻率的1%),陶瓷諧振器的Q值為數(shù)千,石英晶體的Q值為數(shù)萬。


74樓: >>參與討論
vic06
能不能給小弟發(fā)個 ADI AN-280 混合信號電路的設計技術 的文檔
能不能給小弟發(fā)個 ADI AN-280 混合信號電路的設計技術 的文檔;
小弟剛畢業(yè),希望學些這方面的知識

75樓: >>參與討論
vic06
致版主akaer
給小弟發(fā)一份ADI AN-280 混合信號電路的設計技術  的資料吧!
剛剛走出校門,很想學這方面的。
不勝感激!

76樓: >>參與討論
vic06
致版主akaer
我的郵箱:victorzhj@yahoo.com.cn
謝謝!

77樓: >>參與討論
iC921
直接GOOGLE“Mixed Signal CIRCUIT Techniques”就馬上現(xiàn)出了
不要百度它哦

78樓: >>參與討論
akaer
回復vic06
抱歉答復晚了. 這個資料是免費的公開的, 請到GOOGLE或者ADI網(wǎng)站搜索.

79樓: >>參與討論
busdriver
謝謝大家的辛苦勞動
在工作中,我總弄不清楚一些專業(yè)詞匯的的意思,,這里給我一個很好的指導~~感謝大家~~就是圖片看不到

80樓: >>參與討論
terrence
要好好學習一下,好多問題以前忽略了...
 
81樓: >>參與討論
iC921
我暈。圖都全沒了!
 
參與討論
昵稱:
討論內容:
 
 
相關帖子
電容使用困惑
有關延遲電路的問題
擴音器去嘯叫方案討論
挪動電路板的位置、AD轉換結果就會變化,是怎么回事
那位能告訴我啊?謝謝了
免費注冊為維庫電子開發(fā)網(wǎng)會員,參與電子工程師社區(qū)討論,點此進入


Copyright © 1998-2006 udpf.com.cn 浙ICP證030469號